

Today's Presentation

- Nutrient Removal Introduction
- Conventional Approaches
- Biological Phosphorus Removal
- Biological Nitrogen Removal
- New Approaches
- Side stream treatment
- Granular sludge treatment
- Struvite Recovery

Nitrification

- Nitrifying bacteria 2 types
 - Ammonia oxidizing bacteria (AOBs)
 - Nitrite oxidizing bacteria (NOBs)
- Food source: Ammonia
- Electron acceptor: oxygen (air)
- Produces: Nitrate, Acid

AOBs:

Oxygen NH_4 $N0_2 + H^+$ (Ammonia) (Nitrite) (Acid)

NOBs:

Oxygen $N0_3$ NO_2 (Nitrite) (Nitrate)

Nitrogen Removal (Denitrification)

- Food source: Carbon (readily biodegradable COD- rbCOD)
- * Electron acceptor: nitrate, nitrite
- Produces: Nitrogen gas, water, carbonate (buffer)
- Happens in the absence of oxygen

$$\begin{array}{c} \text{NO}_3 \\ \text{(Nitrate)} \end{array} \xrightarrow{\text{Carbon}} \begin{array}{c} \text{Gas} \\ \text{NO}_3 \\ \text{(Nitrogen gas)} \end{array} \xrightarrow{\text{(buffer)}} \begin{array}{c} \text{Gas} \\ \text{(buffer)} \end{array}$$

Phosphorus Removal

- Phosphorus accumulating organisms (PAOs)
- · Food sources: Carbon, Orthophosphate

Summary		
Goal: Remove BOD	Goal: Remove Ammonia	7712
Bacteria: Heterotrophs Requirement: Oxygen Produces: Clean water	Process: Nitrification Bacteria: AOBs, NOBs Requirement: Oxygen Produces: Nitrate, Acid	
Goal: Remove Nitrogen Process: Denitrification Bacteria: Heterotrophs Requirements	Goal: Remove Phosphorus Bacteria: PAOs Requirements Carbon	
NO ₃ from Nitrification Carbon Produces: Acid buffer	Anaerobic Conditions Produces: Stored P	
Environment		planta and order at a residence of area of question of a
Different bacteria function		
within the aeration basins		
	Zero O ₂ Zero NO ₃ , NO ₂ Zero NO ₃ , NO ₂	
	rated Cell Unaerated Cell noxic) (Anaerobic)	
electron other acceptors acce	gen, but No electron electron acceptors eptors present seent	
	e, nitrite)	
What Nutrients Do W	e Care About?	-
Nitrogen (N) Organic Nitrogen Ammonia (NH ₃ , NH ₄ ⁺)	Total Kjeldahl Nitrogen (TKN)	
 Nitrite (NO₂) Nitrate (NO₃) 		
Phosphorus (P) Total phosphorus (TP) Orthophosphate, phosphate	(PO _* 3·)	
, soophide		

Why Do We Care About Nutrients?

- N & P nutrients promote eutrophication
- Both exert O₂ demand deplete DO in receiving waters
- Ammonia is toxic
- Nitrate & nitrite are toxic "Blue Baby Syndrome"
- Limited by NPDES permits!

So, What Can We Do About It?

- Biological Nutrient Removal
- Using bacteria to remove nitrogen and phosphorus
 Activated sludge and attached growth
- Physical/Chemical Nutrient Removal
- Physical or chemical separation of nutrient from wastewater
- Chemical precipitation, ion exchange, adsorption

Nitrifica:	tion	
Nitrifying	bacteria- 2 type	es
* Ammor	ia oxidizing bacter	ria (AOBs)
 Nitrite of 	oxidizing bacteria (NOBs)
 Food sou 	rce: Ammonia	
 Electron 	acceptor: oxygen (air)
 Produces 	: Nitrate, Acid	
AOBs:	NH ₄ $\stackrel{0}{-}$	$\xrightarrow{\text{xygen}}$ NO ₂ + H ⁺
	(Ammonia)	(Nitrite) (Acid)
NOBs:	NO ₂ -0.	xygen → NO ₃
	(Nitrite)	(Nitrate)

Heterotrophs	noval (Denitrification)
	rbon (readily biodegradable COD- rbCOD)
 Electron accepto 	
15	gen gas, water, carbonate (buffer)
 Happens in the a 	
rappens in the t	Justine of oxygen
	Gas
	222
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	rbon
NO ₃ —	\longrightarrow N ₂ + H ₂ O + HCO ₃
(Nitrate)	(Nitrogen gas) (buffer)

Carbon Deficiency Carbon supplementation Readily degradable carbon is required for N removal NO₃ Carbon N₂ + H₂O + HCO₃ (Nitrate) (Nitrogen gas) (buffer)

Side Stream Treatment	
Brown as Caldwell	
Caldwell	
Vhat is "Sidestream"?	
That is diadottoum.	
Dewatering reject water	
High nutrient content (ammonia, P)	
Centrate Filtrate	
Pressate	
Solids thickening reject water?	
Typically low nutrient content	
* Relative ineffective	
-	
- 1 a/m	
/hy do we want to treat a sidestream?	
my do we want to trout a sladstream.	
Reduce nutrient load to main process	
 Sidestream may account for 20-30% of total ammonia load at some plants 	
Recover nutrients -	

Anammox Processes ("s	shortcut" N removal)	
Nitrification	<u>Anammox</u>	
AOBs: NH ₄ Oxygen NO ₂ + H ⁺ (Ammonia) (Nillite) (Acid)	Gas	
NOBs: NO ₂ Oxygen NO ₃ (Nitrate)	$NH_4 + O_2 \longrightarrow N_2 + H_2O$	
<u>Denitrification</u>		
Heterotrophs:	No carbon needed Very little oxygen needed	
$NO_3 \longrightarrow N_2 + H_2O + HCO_3$ (Nitrote) (Nitrogen gas) (buffer)		

Nereda® Process All processes in one reactor Simple cycle Short settling phase Fill & draw combined For continuous feed: use multiple reactors or buffer tank Settling phase 2.0 to 2.5 hours

How Nereda Works: Simultaneous Fill-Draw

Plug flow from bottom to top

- Desired granules on bottom get food first & flocculent biomass gets what is left
- SWD > 16.5 feet
- 25-50% Volume displaced/cycle

Intermittent feed creates feastfamine conditions for slowgrowing organisms

- PAO uptake RBCOD & convert to stored slowly biodegradable
- High conc, during feed leads to greater diffusion into granule

Fill is distributed uniformly at bottom through

Courtesy Ronald Niermans, Haskoning DHV, Netherlands

Struvite Recovery

Reaction

 $NH_3 + H_3PO_4 + Mg(OH)_2 + 4 H_2O \rightarrow MgNH_4PO_4.6H_2O$

Equilibrium

 $[Mg^{2+}][NH_4^+][PO_4^{3-}] = K_{sp}$

Struvite Crystallization Processes

- Crystalactor®
- Ostara Pearl®:Crystalgreen
- PHOSPAQTM
- Multiform Harvest
- NuReSys®
- AirPrex

Example of Crystallizer System

- Typical process parameters:
 HRT ~ 1.0 hr
 MgCl₂ & NaOH added for pH control
 Hydrodynamics vary with reactor design
 80-90% P, 15% N removal (but only 20-30% P recovery)

20

Full-Scale Reactors

Ostara Pearl®,Tigard, Oregon Durham WWTP

Multiform Harvest, Yakima, WA

Durham OR-Ostara

- Ostara applied to dewatering centrate
- Non-biosolids fertilizer product (5-28-0) with 10% Mg
- Vendor options
- Turnkey installation ("treatment fee")
 Outright purchase (\$2.5M)
- Realize 25% reduction in biological P removal demand
- WASSTRIP innovation
- Strip P from WAS prior to digestion
 Increases P load to Ostara

Questions? Brown NE Caldwell